Abstract
As with other engineering design tasks, mine design involves setting design objectives and constraints (the feasible solution space) and finding the optimal design alternative. Mine engineers often struggle to incorporate the preferences of local community members into their evaluation of mine design alternatives because the mining literature lacks tools to quantify such risks during mine planning. This paper presents an approach to evaluate community acceptance (i.e., community preferences for the alternatives) using discrete choice models and decision-based design during mine planning. Using discrete choice models and a rigorous framework, engineers can estimate the cost of social risks as a function of the probability that individuals in the host community will prefer a particular design alternative. They can then estimate the overall utility of a particular design alternative to the project proponents. This paper illustrates the proposed approach with a strategic mine planning exercise for a gold mine. The framework can be a useful tool for designing mines for sustainability, if combined with effective community engagement and management’s commitment to creating shared value.
Funder
Union Pacific/Rock Mountain Professor Endowment
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献