Seasonal Differences in Water-Use Sources of Impatiens hainanensis (Balsaminaceae), a Limestone-Endemic Plant Based on “Fissure-Soil” Habitat Function

Author:

Huang WeixiaORCID,Zhong Yunfang,Song Xiqiang,Zhang Cuili,Ren Mingxun,Du Yanjun

Abstract

The southwestern mountains of Hainan Island are the southernmost region with tropical karst landform in China. The frequent alternation of dry and wet seasons leads to the loss of the mineral nutrients of limestone, creating karst fissure habitats. Plants living in karst fissure habitats for long periods of time have developed local adaptation mechanisms correspondingly. In the paper, hydrogen–oxygen stable isotope technology was applied to determine the water-use sources of Impatiens hainanensis in the dry and wet seasons, hoping to expound the adaptation mechanism of I. hainanensis in karst fissure habitats to the moisture dynamics in the wet and dry seasons. In the wet season (May to October, 2018), the air humidity is relatively high in the I. hainanensis habitat; in the dry season (November 2018 to April 2019), there is a degree of evaporation. In the wet season, fine-root biomass increases with soil depths, while coarse-root biomass decreases with soil depths; in the dry season, fine-root biomass is lower and coarse-root biomass is higher compared with the wet season. It was found that the average rainfall reached 1523 mm and the main water-use sources were shallow (0–5 cm) and middle (5–10 cm) soil water, epikarst water, and shallow karst fissure water during the wet season; the average rainfall reached 528 mm, and the deep (10–15 cm) soil water and shallow karst fissure water were the main water-use sources during the dry season. Fog water has a partial complementary effect in the dry season. The differences in the distribution of root biomass and each source of water in the wet and dry seasons of I. hainanensis also reflect the different water-use strategies of I. hainanensis in the wet and dry seasons. In both dry and wet seasons, I. hainanensis formed a water-use pattern dominated by soil water and shallow fissure water (0–15 cm) under the influence of the “fissure-soil-plant” system in the karst region.

Funder

the National Natural Science Foundation of China

Hainan Provincial Graduate Innovation Research Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3