Use of a Hybrid Wind—Solar—Diesel—Battery Energy System to Power Buildings in Remote Areas: A Case Study

Author:

Almutairi KhalidORCID,Hosseini Dehshiri Seyyed Shahabaddin,Hosseini Dehshiri Seyyed JalaladdinORCID,Mostafaeipour AliORCID,Issakhov Alibek,Techato KuaananORCID

Abstract

The emerging environmental consequences of overdependence on fossil fuels have pushed many countries to invest in clean and renewable sources of power. Countries like Iran where these sources can be found in abundance can take advantage of this potential to reduce their dependence on fossil fuels. This study investigated the feasibility of the standalone use of a hybrid renewable energy system (HRES) to power buildings in the Bostegan village in the Hormozgan province of Iran. Technical, economic, and environmental assessments were performed with the help of the Hybrid Optimization of Multiple Energy Resources (HOMER) software, and the optimal configuration for the system components was determined accordingly. The results showed that the simultaneous use of wind and solar systems with a converter and a backup system comprised of a diesel generator and batteries will be the most economic option, offering electricity at a cost of 1.058 USD/kWh and with a renewable fraction of 64%. After selecting the most optimal system using the step-wise weight assessment ratio analysis (SWARA) and weighted aggregated sum product assessment (WASPAS) techniques, a sensitivity analysis with 27 parameter settings was performed to determine the effect of fuel price fluctuations and the uncertainty in the renewable energy potentials on the results. This analysis showed that in the worst-case scenario, the price of electricity will reach as high as 1.343 $/kWh. In the end, the study investigated an alternative scenario where the generated power is used for hydrogen production, which showed that the system output can be used to produce 643.63 ton-H2/year.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3