Carbon Fluxes in Sustainable Tree Crops: Field, Ecosystem and Global Dimension

Author:

Montanaro GiuseppeORCID,Amato DavideORCID,Briglia Nunzio,Russo CarloORCID,Nuzzo VitaleORCID

Abstract

Carbon (C) budget at cropping systems has not only agronomic but also environmental relevance because of their contribution to both emissions and removals of greenhouse gases (GHGs). Ideally, sustainable orchards are expected to remove atmospheric CO2 at a rate greater than that of the emissions because of (i) optimized biology of the system and (ii) reduced on-site/offsite inputs sourced by the technosphere. However, such a computation might produce inconsistent results and in turn biased communication on sustainability of the cropping systems because C accounting framework(s) are used under unclear context. This study examined the sustainability of orchards in terms of impact on GHGs focusing its significance at the field, ecosystem and global dimension analyzing some operational aspects and limitations of existing frameworks (e.g., net ecosystem carbon balance (NECB), life cycle assessment (LCA)). Global relevance of sustainable orchard was also discussed considering the C sequestration at cropland as instructed by Intergovernmental Panel on Climate Change (IPCC). The uniqueness of olive tree lifespan duration and C sequestration is discussed within the Product Environmental Footprint of agrifood product. The paper also highlighted overlapping components among the NECB, LCA and IPCC frameworks and the need for an integrated C accounting scheme for a more comprehensive and detailed mapping of sustainability in agriculture.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference69 articles.

1. Sustainable development goals,2016

2. Sustainability of agricultural management options under a systems perspective;Pacini,2017

3. Greenhouse Gases in Intensive Agriculture: Contributions of Individual Gases to the Radiative Forcing of the Atmosphere

4. Global Warming Potential and the Net Carbon Balance☆

5. AGRICULTURAL MECHANIZATION

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3