Model-Based Estimation of Amazonian Forests Recovery Time after Drought and Fire Events

Author:

De Faria Bruno L.ORCID,Marano GinaORCID,Piponiot Camille,Silva Carlos A.ORCID,Dantas Vinícius de L.,Rattis Ludmila,Rech Andre R.ORCID,Collalti AlessioORCID

Abstract

In recent decades, droughts, deforestation and wildfires have become recurring phenomena that have heavily affected both human activities and natural ecosystems in Amazonia. The time needed for an ecosystem to recover from carbon losses is a crucial metric to evaluate disturbance impacts on forests. However, little is known about the impacts of these disturbances, alone and synergistically, on forest recovery time and the resulting spatiotemporal patterns at the regional scale. In this study, we combined the 3-PG forest growth model, remote sensing and field derived equations, to map the Amazonia-wide (3 km of spatial resolution) impact and recovery time of aboveground biomass (AGB) after drought, fire and a combination of logging and fire. Our results indicate that AGB decreases by 4%, 19% and 46% in forests affected by drought, fire and logging + fire, respectively, with an average AGB recovery time of 27 years for drought, 44 years for burned and 63 years for logged + burned areas and with maximum values reaching 184 years in areas of high fire intensity. Our findings provide two major insights in the spatial and temporal patterns of drought and wildfire in the Amazon: (1) the recovery time of the forests takes longer in the southeastern part of the basin, and, (2) as droughts and wildfires become more frequent—since the intervals between the disturbances are getting shorter than the rate of forest regeneration—the long lasting damage they cause potentially results in a permanent and increasing carbon losses from these fragile ecosystems.

Publisher

MDPI AG

Subject

Forestry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3