JsrNet: A Joint Sampling–Reconstruction Framework for Distributed Compressive Video Sensing

Author:

Chen Can,Wu Yutong,Zhou Chao,Zhang Dengyin

Abstract

Huge video data has posed great challenges on computing power and storage space, triggering the emergence of distributed compressive video sensing (DCVS). Hardware-friendly characteristics of this technique have consolidated its position as one of the most powerful architectures in source-limited scenarios, namely, wireless video sensor networks (WVSNs). Recently, deep convolutional neural networks (DCNNs) are successfully applied in DCVS because traditional optimization-based methods are computationally elaborate and hard to meet the requirements of real-time applications. In this paper, we propose a joint sampling–reconstruction framework for DCVS, named “JsrNet”. JsrNet utilizes the whole group of frames as the reference to reconstruct each frame, regardless of key frames and non-key frames, while the existing frameworks only utilize key frames as the reference to reconstruct non-key frames. Moreover, different from the existing frameworks which only focus on exploiting complementary information between frames in joint reconstruction, JsrNet also applies this conception in joint sampling by adopting learnable convolutions to sample multiple frames jointly and simultaneously in an encoder. JsrNet fully exploits spatial–temporal correlation in both sampling and reconstruction, and achieves a competitive performance in both the quality of reconstruction and computational complexity, making it a promising candidate in source-limited, real-time scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3