A Low-Complexity Deep Learning Model for Predicting Targeted Sequencing Depth from Probe Sequence

Author:

Feng Yibo1,Guo Quan1,Chen Weigang12ORCID,Han Changcai1

Affiliation:

1. School of Microelectronics, Tianjin University, Tianjin 300072, China

2. Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China

Abstract

Targeted sequencing has been widely utilized for genomic molecular diagnostics and the emerging DNA data storage paradigm. However, the probe sequences used to enrich regions of interest have different hybridization kinetic properties, resulting in poor sequencing uniformity and setting limitations for the large-scale application of the technology. Here, a low-complexity deep learning model is proposed for prediction of sequencing depth from probe sequences. To capture the representation of probe and target sequences, we utilized a sequence-encoding model that incorporates k-mer and word embedding techniques, providing a streamlined alternative to the intricate computations involved in biochemical feature analysis. We employed bidirectional long short-term memory (Bi-LSTM) to effectively capture both long-range and short-range interactions within the representation. Furthermore, the attention mechanism was adopted to identify pivotal regions in the sequences that significantly influence sequencing depth. The ratio of the predicted sequencing depth to the actual sequencing depth was in the interval of 1/3—3 as the evaluation metric of model accuracy. The prediction accuracy was 94.3% in the human single-nucleotide polymorphism (SNP) panel and 99.7% in the synthetic DNA information storage sequence (SynDNA) panel. Our model substantially reduced data processing time (from 334 min to 4 min of CPU time in the SNP panel) and model parameters (from 300 k to 70 k) compared with the baseline model.

Funder

Seed Fund of Tianjin University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3