Study of Differential Evolution Variants in the Dimensional Synthesis of Four-Bar Grashof-Type Mechanisms

Author:

Rodríguez-Molina Alejandro1ORCID,Villarreal-Cervantes Miguel Gabriel2ORCID,Rueda-Gutiérrez Allan-Balam1ORCID,Aldape-Pérez Mario2ORCID,Álvarez-Piedras José David1,Parra-Ocampo Miguel Fernando1ORCID

Affiliation:

1. Research and Postgraduate Division, Tecnológico Nacional de México/IT de Tlalnepantla, Tlalnepantla de Baz 54070, Mexico

2. Mechatronics Section, Postgraduate Department, CIDETEC, Instituto Politécnico Nacional, Mexico City 07700, Mexico

Abstract

Mechanisms have allowed for the automation of complex, repetitive, demanding, or dangerous tasks for humans. Among the different mechanisms, those with a closed kinematic chain are more precise and robust compared to open chain ones, which makes them suitable for many applications. One of the most widely used closed-chain alternatives is the four-bar Grashof-type mechanism, as it can generate highly nonlinear closed trajectories with a single degree of freedom. However, the dimensional synthesis of these mechanisms to generate specific trajectories is a complex task. Fortunately, computational methods known as metaheuristics can solve such problems effectively. Differential Evolution (DE) is a metaheuristic commonly used to tackle the dimensional synthesis problem. This paper presents a comparative study of the most commonly used variants of DE in solving the dimensional synthesis problem of four-bar Grashof-type mechanisms. The purpose of the study is to provide guidelines to choose the best DE alternative for solving problems of this type, as well as to support the development of DE-based algorithms that can solve more specific cases effectively. After analysis, the rand/1/exp variant was found to be the most effective in solving the dimensional synthesis problem, which was followed by best/1/bin. Based on these results, a Simple and Improved DE (SIDE) variant based on these two was proposed. The competitive performance of the SIDE with respect to the studied DE variants and in contrast to the results of algorithms used in the recent specialized literature for mechanism synthesis illustrates the usefulness of the study.

Funder

the Dirección de Posgrado, Investigación e Innovación of the Tecnológico Nacional de México

the Secretaría de Investigación y Posgrado (SIP) of the Instituto Politécnico Nacional

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3