Development and Validation of Machine-Learning Models to Support Clinical Diagnosis for Non-Epileptic Psychogenic Seizures

Author:

Zucco Chiara1ORCID,Calabrese Barbara1ORCID,Mancuso Rossana1,Sturniolo Miriam2,Pucci Franco2,Gambardella Antonio2ORCID,Cannataro Mario1ORCID

Affiliation:

1. Data Analytics Research Center, Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy

2. Institute of Neurology, Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy

Abstract

Electroencephalographic (EEG) signal processing and machine learning can support neurologists’ work in discriminating Psychogenic Non-Epileptic Seizure (PNES) from epilepsy. PNES represents a neurological disease often misdiagnosed. Although the symptoms of PNES patients can be similar to those exhibited by epileptic patients, EEG signals during a psychogenic seizure do not show ictal patterns such as in epilepsy. Therefore, PNES diagnosis requires long-term EEG video. Applying signal processing and machine-learning methodologies could help clinicians find helpful information in the clinical diagnosis of PNES by analyzing EEG signals registered in resting conditions and in a short time. These methodologies should prevent long EEG recording sessions and avoid inducing seizures in the subjects. The aim of our study is to develop and validate several machine-learning models on a larger dataset, consisting of 225 EEGs (75 healthy, 75 PNES, and 75 subjects with epilepsy). A deep analysis of our results shows that changes in the evaluation strategy led to changes in accuracy from 45% to 83.98% for a standard Light Gradient Boosting Machine (LGBM) classifier. Our findings suggest that it is necessary to operate a very rigorous control in terms of experimental data collection (patient selection, signal acquisition) and terms of validation strategies to obtain and reproducible results.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3