Fast Numerical Reconstruction of Integral Imaging Based on a Determined Interval Mapping

Author:

Choi Heemin1,Kim Nam2ORCID,Kang Hoonjong1

Affiliation:

1. Institute of Applied Hologram (IAH), Wonkwang University, Iksan-si 54538, Jeollabuk-do, Republic of Korea

2. School of Electrical Engineering and Computer Science, Chungbuk National University, Cheongju-si 28644, Chungbuk, Republic of Korea

Abstract

In this paper, a fast numerical reconstruction of the integral imaging based on a determined interval mapping is proposed. To reduce the computation time, the proposed method employs the determined interval mapping instead of the use of magnification. In the numerical reconstruction procedure, the acquired elemental image array (EIA) from the 3D object is displayed. The flipped elemental image (EI)s are numerically formed by the virtual pinhole array. Then, the determined interval depending on the reconstruction plane is calculated and applied to each flipped EI. These flipped EIs are shifted to match the determined interval at the reconstruction plane and superimposed together. After this superimposed image is divided by the number of the superposition, the position error between the location of the shifted EI and the pixel position of the reconstruction plane is corrected by interpolation. As a result, the refocused image depending on the reconstruction plane can be reconstructed rapidly. From the experimental result, we confirmed that the proposed method largely decreased the computation time compared with the conventional method. In addition, we verified that the quality of the reconstruction by the proposed method is higher than the conventional method by the use of the structural similarity index method.

Funder

Ministry of Education

Korea government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3