Optimizing BiLSTM Network Attack Prediction Based on Improved Gray Wolf Algorithm

Author:

Qiu Shaoming1,Wang Yahui1,Lv Yana1,Chen Fen1,Zhao Jiancheng1ORCID

Affiliation:

1. Communication and Network Laboratory, Dalian University, Dalian 116622, China

Abstract

Aiming at the problems of low accuracy of network attack prediction and long response time of attack detection, bidirectional long short-term memory (BiLSTM) was used to predict network attacks. However, BiLSTM has the problems of difficulty in parameter setting and low accuracy of the prediction model. This paper first proposes the Improved Grey Wolf algorithm (IGWO) to optimize the BiLSTM (IGWO-BiLSTM). First, IGWO uses Dimension Learning Hunting (DLH) strategy to construct the wolf neighborhood. In the established wolf neighborhood, the BiLSTM parameters are iteratively optimized to obtain a prediction model with fast convergence speed and small reconstruction error. Secondly, the dataset is preprocessed, and the IP packet statistical signature (IPDCF) is defined according to the characteristics of denial of service (DOS) and distributed denial of service (DDOS) attacks. IPDCF was used to establish the time series model and network traffic time series data were input into IGWO-BiLSTM to get the prediction results. Finally, the DOS and DDOS network packets were input into the trained prediction model to obtain the prediction results of attack data. By comparing the predicted values of IGWO-BiLSTM normal network packets and attack packets, a reasonable threshold is set to provide the basis for the subsequent attack prediction. Experiments show that the IGWO-BiLSTM can reach 99.05% of the fitting degree and accurately distinguish network attacks from normal network demand increases.

Funder

Equipment Development Department of the Central Military Commission

Dalian University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent deformation prediction model for concrete dams based on VMD-ResNetPlus-BiLSTM;Proceedings of the 2024 International Academic Conference on Edge Computing, Parallel and Distributed Computing;2024-04-19

2. Ultra-Short-Term Photovoltaic Power Generation Prediction Based on Hunter–Prey Optimized K-Nearest Neighbors and Simple Recurrent Unit;Applied Sciences;2024-03-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3