An Enhanced Feature Extraction Network for Medical Image Segmentation

Author:

Gao Yan1,Che Xiangjiu1,Xu Huan1,Bie Mei12

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun 130012, China

2. Institute of Education, Changchun Normal University, Changchun 130032, China

Abstract

The major challenges for medical image segmentation tasks are complex backgrounds and fuzzy boundaries. In order to reduce their negative impacts on medical image segmentation tasks, we propose an enhanced feature extraction network (EFEN), which is based on U-Net. Our network is designed with the structure of feature re-extraction to strengthen the feature extraction ability. In the process of decoding, we use improved skip-connection, which includes positional encoding and a cross-attention mechanism. By embedding positional information, absolute information and relative information between organs can be captured. Meanwhile, useful information will be strengthened and useless information will be weakened by using the cross-attention mechanism. Our network can finely identify the features of each skip-connection and cause the features in the process of decoding to have less noise in order to reduce the effect of fuzzy object boundaries in medical images. Experiments on the CVC-ClinicDB, the task1 from ISIC-2018, and the 2018 Data Science Bowl challenge dataset demonstrate that EFEN outperforms U-Net and some recent networks. For example, our method obtains 5.23% and 2.46% DSC improvements compared to U-Net on CVC-ClinicDB and ISIC-2018, respectively. Compared with recent works, such as DoubleU-Net, we obtain 0.65% and 0.3% DSC improvements on CVC-ClinicDB and ISIC-2018, respectively.

Funder

National Natural Science Foundation of China

Science and Technology Development Plan of Jilin Province of China

Social Science Research of the Education Department of Jilin Province

Humanities and Social Science Foundation of Changchun Normal University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3