Dynamic Transaction Confirmation Sharding Protocol for Alliance Chain

Author:

Sun Nigang1,Li Junlong2,Zhang Yuanyi2ORCID

Affiliation:

1. School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213000, China

2. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213000, China

Abstract

Alliance chain has gained widespread popularity in industrial and commercial fields due to its multi-centralization and node manageability. Current implementations of the alliance chain suffer from scalability obstacles, such as communication congestion and throughput drop, when the number of nodes increases. In this paper, a novel dynamic transaction confirmation sharding protocol is proposed, which improves transaction processing efficiency by partitioning nodes and assigning different transactions to different shards. It utilizes dynamic transaction confirmation consensus as a sharding intra-consensus mechanism to minimize message size and package transactions into microblocks, which modifies communication content during transaction propagation among shards and reduces network congestion and shard reconfigure cost. The protocol leverages a review system and reputation model to identify and punish malicious nodes and also incorporates a verifiable random function for node configuration, which ensures a sufficient number of honest nodes within the shard and prevents repeated consensus processes. Simulation results show that the proposed protocol outperforms mainstream used permissioned chain sharding protocols Attested HyperLedger and Sharper, achieving a throughput improvement of at least 20%. This protocol is suitable for scenarios requiring high throughput and reliability in industrial and commercial fields such as finance, logistics, and supply chain management. Even if the number of alliance chain nodes increases to the usual maximum, or there are some faulty nodes, the protocol can still maintain stable performance.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3