Agricultural Water Use Efficiency: Is There Any Spatial Correlation between Different Regions?

Author:

Zhi YanlingORCID,Zhang FanORCID,Wang Huimin,Qin Teng,Tong Jinping,Wang Ting,Wang ZhiqiangORCID,Kang Jinle,Fang ZhouORCID

Abstract

Affected by global climate change and water shortages, food security continues to be challenged. Improving agricultural water use efficiency is essential to guarantee food security. China has been suffering from water scarcity for a long time, and insufficient water supply in the agricultural sector has seriously threatened regional food security and sustainable development. This study adopted the super-efficiency slack-based model (SBM) to measure the provincial agricultural water use efficiency (AWUE). Then, we applied the vector autoregression (VAR) Granger causality test and social network analysis (SNA) method to explore the spatial correlation of AWUE between different provinces and reveal the interprovincial transmission mechanism of spillover effects in AWUE. The results show the following: (1) In China, the provincial AWUE was significantly enhanced, and the gaps in provincial AWUE have widened in the past 20 years. (2) There were apparent spatial heterogeneity and correlations of provincial AWUE. The provinces with higher AWUE were mainly located in economically developed and coastal areas. (3) The correlation of AWUE between provinces showed significant network structure characteristics. Fujian, Hebei, Jiangsu, Shandong, and Hubei Qinghai were central to the network, with high centrality. (4) The AWUE spatial correlation network could be divided into four blocks. Each block played a different role in the cross-provincial transmission of spillover effects. Therefore, it is necessary to manage the agricultural water resources and improve water use efficiency from the perspective of the network.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3