The Impacts of Urbanization to Improve Agriculture Water Use Efficiency—An Empirical Analysis Based on Spatial Perspective of Panel Data of 30 Provinces of China

Author:

Lu Weinan,Sarkar ApurboORCID,Hou Mengyang,Liu Wenxin,Guo Xinyi,Zhao Kai,Zhao Minjuan

Abstract

China has witnessed accelerated urbanization since the reforms and open policies which began in 1978. This eventually resulted in increased residential water requirements and worsening water shortages, particularly in the current century. In the context of resource and environmental constraints, improving agricultural water use efficiency (AWUE) is a crucial issue to ensure food security, improve the ecological environment, and meet the needs of sustainable agricultural development. Based on the panel data of 30 provinces in China from 1999 to 2018, the article uses the Super-SBM model to measure the AWUE. Moreover, the study uses the entropy method to establish the urbanization evaluation index system from the dimensions of population, land, economy, measures the comprehensive level of urbanization development, and further constructs a dynamic spatial econometric model. We use the unconditional maximum likelihood estimation method to evaluate the impact of urbanization development on AWUE and its heterogeneity. The findings reveal that the AWUE considering undesired outcomes has generally shown a steady improvement, but there is ample space for resource conservation and environmental protection, and there are noticeable differences among regions. The decomposition of spatial effects shows that urbanization development in each region has a short-term positive effect on AWUE in the region and neighboring regions, and a long-term effect exists only in the western region. The impact of urbanization in different dimensions has been found that both land urbanization and economic urbanization contribute to the improvement of AWUE, while population urbanization helps to improve AWUE by improving the awareness level of the farmers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3