A Review of Control-Oriented Bioelectrochemical Mathematical Models of Microbial Fuel Cells

Author:

Deb Dipankar,Patel RaviORCID,Balas Valentina E.

Abstract

A microbial fuel cell (MFC) is a potentially viable renewable energy option which promises effective and commercial harvesting of electrical power by bacterial movement and at the same time also treats wastewater. Microbial fuel cells are complicated devices and therefore research in this field needs interdisciplinary knowledge and involves diverse areas such as biological, chemical, electrical, etc. In recent decades, rapid strides have taken place in fuel cell research and this technology has become more efficient. For effective usage, such devices need advanced control techniques for maintaining a balance between substrate supply, mass, charge, and external load. Most of the research work in this area focuses on experimental work and have been described from the design perspective. Recently, the development in mathematical modeling of such cells has taken place which has provided a few mathematical models. Mathematical modeling provides a better understanding of the operations and the dynamics of MFCs, which will help to develop control and optimization strategies. Control-oriented bio-electrochemical models with mass and charge balance of MFCs facilitate the development of advanced nonlinear controllers. This work reviews the different mathematical models of such cells available in the literature and then presents suitable parametrization to develop control-oriented bio-electrochemical models of three different types of cells with their uncertain parameters.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Production of chemicals and energy;Electrochemical Membrane Technology;2024

2. Computational Fluid Dynamics: Fundamentals and Applications in the Design and Optimization of Various Bioreactors;Computational Fluid Dynamics Applications in Bio and Biomedical Processes;2024

3. An Overview of Computational Fluid Dynamics in Modelling and Simulation of Microbial Fuel Cells;Computational Fluid Dynamics Applications in Bio and Biomedical Processes;2024

4. CFD Modelling for Optimization of Wastewater Treatment Processes: Towards a Low-Cost Cleaner Future Tool;Computational Fluid Dynamics Applications in Bio and Biomedical Processes;2024

5. Model-based optimal and robust control of renewable hydrogen gas production in a fed-batch microbial electrolysis cell;International Journal of Hydrogen Energy;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3