Metabolic Regulation Analysis of Ajmalicine Biosynthesis Pathway in Catharanthus roseus (L.) G. Don Suspension Culture Using Nanosensor

Author:

Ambrin Ghazala,Ali Hayssam M.,Ahmad AltafORCID

Abstract

Ajmalicine is one of the most popular antihypertensive drugs obtained from the root barks of Cathranthus roseus (L.) G. Don and Rauvolfia serpentine (L.) Benth. ex Kurz. It has also potential antimicrobial, cytotoxic, central depressant and antioxidant activities. As the demand for the alkaloid is significantly high, metabolic engineering approaches are being tried to increase its production in both homologous and heterologous systems. The metabolic engineering approach requires knowledge of the metabolic regulation of the alkaloid. For understanding the metabolic regulation, fluxomic analysis is important as it helps in understanding the flux of the alkaloid through the complicated metabolic pathway. The present study was conducted to analyse the flux analysis of the ajmalicine biosynthesis, using a genetically encoded Fluorescent Resonance Energy Transfer FRET-based nanosensor for ajmalicine (FLIP-Ajn). Here, we have silenced six important genes of terpenoid indole alkaloid (TIA), namely G10H, 10HGO, TDC, SLS, STR and SDG, through RNA-mediated gene silencing in different batches of C. roseus suspension cells, generating six silenced cell lines. Monitoring of the ajmalicine level was carried out using FLIP-Ajn in these silenced cell lines, with high spatial and temporal resolution. The study offers the rapid, high throughput real-time measurement of ajmalicine flux in response to the silenced TIA genes, thereby identifying the regulatory gene controlling the alkaloid flux in C. roseus suspension cells. We have reported that the STR gene encoding strictosidine synthase of the TIA pathway could be the regulatory gene of the ajmalicine biosynthesis.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3