Real-Time Detection of Cook Assistant Overalls Based on Embedded Reasoning

Author:

Sheng QinghuaORCID,Sheng HaixiangORCID,Gao Peng,Li ZhuORCID,Yin Haibing

Abstract

Currently, the target detection based on convolutional neural network plays an important role in image recognition, speech recognition and other fields. However, the current network model features a complex structure, a huge number of parameters and resources. These conditions make it difficult to apply in embedded devices with limited computational capabilities and extreme sensitivity to power consumption. In this regard, the application scenarios of deep learning are limited. This paper proposes a real-time detection scheme for cook assistant overalls based on the Hi3559A embedded processor. With YOLOv3 as the benchmark network, this scheme fully mobilizes the hardware acceleration resources through the network model optimization and the parallel processing technology of the processor, and improves the network reasoning speed, so that the embedded device can complete the task of real-time detection on the local device. The experimental results show that through the purposeful cropping, segmentation and in-depth optimization of the neural network according to the specific processor, the neural network can recognize the image accurately. In an application environment where the power consumption is only 5.5 W, the recognition speed of the neural network on the embedded end is increased to about 28 frames (the design requirement was to achieve a recognition speed of 25 frames or more), so that the optimized network can be effectively applied in the back kitchen overalls identification scene.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3