Early Signs of Molecular Defects in iPSC-Derived Neural Stems Cells from Patients with Familial Parkinson’s Disease

Author:

Akrioti Elissavet,Karamitros TimokratisORCID,Gkaravelas Panagiotis,Kouroupi Georgia,Matsas RebeccaORCID,Taoufik Era

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, classically associated with extensive loss of dopaminergic neurons of the substantia nigra pars compacta. The hallmark of the disease is the accumulation of pathogenic conformations of the presynaptic protein, α-synuclein (αSyn), and the formation of intraneuronal protein aggregate inclusions. Neurodegeneration of dopamine neurons leads to a prominent dopaminergic deficiency in the basal ganglia, responsible for motor disturbances. However, it is now recognized that the disease involves more widespread neuronal dysfunction, leading to early and late non-motor symptoms. The development of in vitro systems based on the differentiation of human-induced pluripotent stem cells provides us the unique opportunity to monitor alterations at the cellular and molecular level throughout the differentiation procedure and identify perturbations that occur early, even at the neuronal precursor stage. Here we aim to identify whether p.A53T-αSyn induced disturbances at the molecular level are already present in neural precursors. Towards this, we present data from transcriptomics analysis of control and p.A53T-αSyn NPCs showing altered expression in transcripts involved in axon guidance, adhesion, synaptogenesis, ion transport, and metabolism. The comparative analysis with the transcriptomics profile of p.A53T-αSyn neurons shows both distinct and overlapping pathways leading to neurodegeneration while meta-analysis with transcriptomics data from both neurodegenerative and neurodevelopmental disorders reveals that p.A53T-pathology has a significant overlap with the latter category. This is the first study showing that molecular dysregulation initiates early at the p.A53T-αSyn NPC level, suggesting that synucleinopathies may have a neurodevelopmental component.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3