CavitySpace: A Database of Potential Ligand Binding Sites in the Human Proteome

Author:

Wang ShiweiORCID,Lin HaoyuORCID,Huang ZhixianORCID,He Yufeng,Deng Xiaobing,Xu Youjun,Pei JianfengORCID,Lai LuhuaORCID

Abstract

Location and properties of ligand binding sites provide important information to uncover protein functions and to direct structure-based drug design approaches. However, as binding site detection depends on the three-dimensional (3D) structural data of proteins, functional analysis based on protein ligand binding sites is formidable for proteins without structural information. Recent developments in protein structure prediction and the 3D structures built by AlphaFold provide an unprecedented opportunity for analyzing ligand binding sites in human proteins. Here, we constructed the CavitySpace database, the first pocket library for all the proteins in the human proteome, using a widely-applied ligand binding site detection program CAVITY. Our analysis showed that known ligand binding sites could be well recovered. We grouped the predicted binding sites according to their similarity which can be used in protein function prediction and drug repurposing studies. Novel binding sites in highly reliable predicted structure regions provide new opportunities for drug discovery. Our CavitySpace is freely available and provides a valuable tool for drug discovery and protein function studies.

Funder

Chinese Academy of Medical Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3