α-Synuclein Conformational Plasticity: Physiologic States, Pathologic Strains, and Biotechnological Applications

Author:

Li AmandaORCID,Rastegar Cyrus,Mao XiaoboORCID

Abstract

α-Synuclein (αS) is remarkable for both its extensive conformational plasticity and pathologic prion-like properties. Physiologically, αS may populate disordered monomeric, helically folded tetrameric, or membrane-bound oligomeric states. Pathologically, αS may assemble into toxic oligomers and subsequently fibrils, the prion-like transmission of which is implicated in a class of neurodegenerative disorders collectively termed α-synucleinopathies. Notably, αS does not adopt a single “amyloid fold”, but rather exists as structurally distinct amyloid-like conformations referred to as “strains”. The inoculation of animal models with different strains induces distinct pathologies, and emerging evidence suggests that the propagation of disease-specific strains underlies the differential pathologies observed in patients with different α-synucleinopathies. The characterization of αS strains has provided insight into the structural basis for the overlapping, yet distinct, symptoms of Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies. In this review, we first explore the physiological and pathological differences between conformational states of αS. We then discuss recent studies on the influence of micro-environmental factors on αS species formation, propagation, and the resultant pathological characteristics. Lastly, we review how an understanding of αS conformational properties has been translated to emerging strain amplification technologies, which have provided further insight into the role of specific strains in distinct α-synucleinopathies, and show promise for the early diagnosis of disease.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3