Yeast Protein Kinase A Isoforms: A Means of Encoding Specificity in the Response to Diverse Stress Conditions?

Author:

Creamer Declan R.ORCID,Hubbard Simon J.,Ashe Mark P.,Grant Chris M.ORCID

Abstract

Eukaryotic cells have developed a complex circuitry of signalling molecules which monitor changes in their intra- and extracellular environments. One of the most widely studied signalling pathways is the highly conserved cyclic AMP (cAMP)/protein kinase A (PKA) pathway, which is a major glucose sensing circuit in the yeast Saccharomyces cerevisiae. PKA activity regulates diverse targets in yeast, positively activating the processes that are associated with rapid cell growth (e.g., fermentative metabolism, ribosome biogenesis and cell division) and negatively regulating the processes that are associated with slow growth, such as respiratory growth, carbohydrate storage and entry into stationary phase. As in higher eukaryotes, yeast has evolved complexity at the level of the PKA catalytic subunit, and Saccharomyces cerevisiae expresses three isoforms, denoted Tpk1-3. Despite evidence for isoform differences in multiple biological processes, the molecular basis of PKA signalling specificity remains poorly defined, and many studies continue to assume redundancy with regards to PKA-mediated regulation. PKA has canonically been shown to play a key role in fine-tuning the cellular response to diverse stressors; however, recent studies have now begun to interrogate the requirement for individual PKA catalytic isoforms in coordinating distinct steps in stress response pathways. In this review, we discuss the known non-redundant functions of the Tpk catalytic subunits and the evolving picture of how these isoforms establish specificity in the response to different stress conditions.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3