Water Flow Characteristics Controlled by Slope Morphology under Different Rainfall Capacities and Its Implications for Slope Failure Patterns

Author:

Zhang Bin,Zhang Maosheng,Liu Hao,Sun Pingping,Feng Li,Li Tonglu,Wang Yimin

Abstract

The high sensitivity of loess slopes to water has been emphasized in many studies. However, it is still limited in terms of the understanding of slope morphological differentiation on the overall and local failure patterns in slopes, as well as on the acquisition method of hydrological dynamics. In this study, rainfall characteristics and slope surface morphological differences were introduced. Geoelectric and environmental factors were monitored. On this basis, apparent resistivity corrected by seasonal temperature and its relationship with soil water content was calibrated. The water migration characteristics and potential failure patterns of three slope morphologies were evaluated. The results are: (i) the improved resistivity method can better reflect the water flow movement within the slope, and it performs well after being corrected by temperature; (ii) the characteristics of surface runoff and water infiltration are directly affected by the cumulative rainfall value, and especially when the cumulative rainfall is >70 mm threshold, the surface runoff quickly infiltrates into the deep of the slope along the preferential paths; (iii) the interception ability of loess slope morphology to the surface runoff is concave slope > convex slope > linear slope; (iv) with the continuous rainfall, the convex surface of a slope is prone to be damaged by saturated mud flow. When the cumulative rainfall threshold is 70 mm, the preferential flow is easily excited on the concave surface of the slope, resulting in local collapse at the slope toe and mid-deep landslides.

Funder

MaoSheng Zhang

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3