Long-Term Change of Lake Water Storage and Its Response to Climate Change for Typical Lakes in Arid Xinjiang, China

Author:

Huang Zijin12ORCID,Xu Jianhua12ORCID,Zheng Lilin12ORCID

Affiliation:

1. Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China

2. Research Center for East-West Cooperation in China, East China Normal University, Shanghai 200241, China

Abstract

Lakes play a role as the sentinel of climate change. Surrounded by vast expanses of barren land with limited infrastructure, there is also a lack of knowledge about the dynamics of dryland lakes. The change of lake area can be effectively monitored by remote sensing, and multi-source satellite altimetry datasets provide the possibility to obtain long-term lake water level data. Using the Global Surface Water Monthly Historical dataset and altimetry water level dataset (Hydroweb), we reconstructed a time series of lake water storage changes in Xinjiang, Northwestern China, by establishing the empirical models based on the statistical relationship between the surface area and water level of each lake. We further explored lake response to climate change. The results show that the storage of water at Ayakkum Lake, Aqqikkol Lake and Aksayquin Lake have been undergoing an obvious expanding trend from 2000 to 2020, at a rate of 3.59×108m3/a, 9.43×108m3/a and 0.44×108m3/a, respectively. In the plain and transition zone, Ulungur Lake showed an upward tendency (0.413×108m3/a) in water storage, while Manas Lake and Bosten Lake experienced shrinkage with descending rates of −0.1×108m3/a and −0.86×108m3/a. Temperature changes significantly affect the lake water storage on plateaus, especially those lakes supplied with a large proportion of glacial meltwater. Precipitation is a key factor for changes of lake storage in the plain and transition zones. Meanwhile, extreme weather and man-made factors also play crucial roles. To reduce the risk of flood and drought disasters, rational regulation of water resources is required, and a large-scale integrated catchment management plan can avoid inadvertent trade-offs. This research provides a new perspective for lake water storage inversion, as well as data support for water resources management in arid areas including Xinjiang.

Funder

3rd Comprehensive Scientific survey in Xinjiang

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3