Upper Body Posture Recognition Using Inertial Sensors and Recurrent Neural Networks

Author:

Tang Hao-Yuan,Tan Shih-Hua,Su Ting-Yu,Chiang Chang-JungORCID,Chen Hsiang-HoORCID

Abstract

Inadequate sitting posture can cause imbalanced loading on the spine and result in abnormal spinal pressure, which serves as the main risk factor contributing to irreversible and chronic spinal deformity. Therefore, sitting posture recognition is important for understanding people’s sitting behaviors and for correcting inadequate postures. Recently, wearable devices embedded with microelectromechanical systems (MEMs) sensors, such as inertial measurement units (IMUs), have received increased attention in human activity recognition. In this study, a wearable device embedded with IMUs and a machine learning algorithm were developed to classify seven static sitting postures: upright, slump, lean, right and left bending, and right and left twisting. Four 9-axis IMUs were uniformly distributed between thoracic and lumbar regions (T1-L5) and aligned on a sagittal plane to acquire kinematic information about subjects’ backs during static-dynamic alternating motions. Time-domain features served as inputs to a signal-based classification model that was developed using long short-term memory-based recurrent neural network (LSTM-RNN) architecture, and the model’s classification performance was used to evaluate the relevance between sensor signals and sitting postures. Overall results from performance evaluation tests indicate that this IMU-based measurement and LSTM-RNN structural scheme was appropriate for sitting posture recognition.

Funder

Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sitting Posture Recognition and Feedback: A Literature Review;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11

2. Sitting Posture Recognition Based on the Computer's Camera;Proceedings of the 2024 2nd Asia Conference on Computer Vision, Image Processing and Pattern Recognition;2024-04-26

3. Double-Fishtail-Shaped FBG Wearable Device for Sitting Posture Recognition and Real-Time Respiratory Monitoring;IEEE Sensors Journal;2024-04-01

4. Deep Context Model (DCM): dual context-attention aware model for recognizing the heterogeneous human activities using smartphone sensors;Evolving Systems;2024-03-12

5. Intelligent systems for sitting posture monitoring and anomaly detection: an overview;Journal of NeuroEngineering and Rehabilitation;2024-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3