Abstract
Inadequate sitting posture can cause imbalanced loading on the spine and result in abnormal spinal pressure, which serves as the main risk factor contributing to irreversible and chronic spinal deformity. Therefore, sitting posture recognition is important for understanding people’s sitting behaviors and for correcting inadequate postures. Recently, wearable devices embedded with microelectromechanical systems (MEMs) sensors, such as inertial measurement units (IMUs), have received increased attention in human activity recognition. In this study, a wearable device embedded with IMUs and a machine learning algorithm were developed to classify seven static sitting postures: upright, slump, lean, right and left bending, and right and left twisting. Four 9-axis IMUs were uniformly distributed between thoracic and lumbar regions (T1-L5) and aligned on a sagittal plane to acquire kinematic information about subjects’ backs during static-dynamic alternating motions. Time-domain features served as inputs to a signal-based classification model that was developed using long short-term memory-based recurrent neural network (LSTM-RNN) architecture, and the model’s classification performance was used to evaluate the relevance between sensor signals and sitting postures. Overall results from performance evaluation tests indicate that this IMU-based measurement and LSTM-RNN structural scheme was appropriate for sitting posture recognition.
Funder
Ministry of Science and Technology of Taiwan
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献