Productivity Prediction of Fractured Horizontal Well in Shale Gas Reservoirs with Machine Learning Algorithms

Author:

Wang Tianyu,Wang Qisheng,Shi Jing,Zhang Wenhong,Ren Wenxi,Wang Haizhu,Tian Shouceng

Abstract

Predicting shale gas production under different geological and fracturing conditions in the fractured shale gas reservoirs is the foundation of optimizing the fracturing parameters, which is crucial to effectively exploit shale gas. We present a multi-layer perceptron (MLP) network and a long short-term memory (LSTM) network to predict shale gas production, both of which can quickly and accurately forecast gas production. The prediction performances of the networks are comprehensively evaluated and compared. The results show that the MLP network can predict shale gas production by geological and fracturing reservoir parameters. The average relative error of the MLP neural network is 2.85%, and the maximum relative error is 12.9%, which can meet the demand of engineering shale gas productivity prediction. The LSTM network can predict shale gas production through historical production under the constraints of geological and fracturing reservoir parameters. The average relative error of the LSTM neural network is 0.68%, and the maximum relative error is 3.08%, which can reliably predict shale gas production. There is a slight deviation between the predicted results of the MLP model and the true values in the first 10 days. This is because the daily production decreases rapidly during the early production stage, and the production data change greatly. The largest relative errors of LSTM in this work on the 10th, 100th, and 1000th day are 0.95%, 0.73%, and 1.85%, respectively, which are far lower than the relative errors of the MLP predictions. The research results can provide a fast and effective mean for shale gas productivity prediction.

Funder

National Natural Science Foundation of China

China University of Petroleum, Beijing

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3