Abstract
A simulation method is developed herein based on the particle finite element method (PFEM) to simulate processes with surface tension and phase change. These effects are important in the simulation of industrial applications, such as welding and additive manufacturing, where concentrated heat sources melt a portion of the material in a localized fashion. The aim of the study is to use this method to simulate such processes at the meso-scale and thereby gain a better understanding of the physics involved. The advantage of PFEM lies in its Lagrangian description, allowing for automatic tracking of interfaces and free boundaries, as well as its robustness and flexibility in dealing with multiphysics problems. A series of test cases is presented to validate the simulation method for these two effects in combination with temperature-driven convective flows in 2D. The PFEM-based method is shown to handle both purely convective flows and those with the Marangoni effect or melting well. Following exhaustive validation using solutions reported in the literature, the obtained results show that an overall satisfactory simulation of the complex physics is achieved. Further steps to improve the results and move towards the simulation of actual welding and additive manufacturing examples are pointed out.
Funder
FRIA-FNRS for B-J Bobach and WBI for D. Celentano
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献