The Influence of Electrolyte Flow Hydrodynamics on the Performance of a Microfluidic Dye-Sensitized Solar Cell

Author:

Szafran Roman G.ORCID,Davykoza MikitaORCID

Abstract

The dye-sensitized solar cells microfluidically integrated with a redox flow battery (µDSSC-RFB) belong to a new emerging class of green energy sources with an inherent opportunity for energy storage. The successful engineering of microfluidically linked systems is, however, a challenging subject, as the hydrodynamics of electrolyte flow influences the electron and species transport in the system in several ways. In the article, we have analyzed the microflows hydrodynamics by means of the lattice-Boltzmann method, using the algebraic solution of the Navier-Stokes equation for a duct flow and experimentally by the micro particle image velocimetry method. Several prototypes of µDSSC were prepared and tested under different flow conditions. The efficiency of serpentine µDSSC raised from 2.8% for stationary conditions to 3.1% for electrolyte flow above 20 mL/h, while the fill factor increased about 13% and open-circuit voltage from an initial 0.715 V to 0.745 V. Although the hexagonal or circular configurations are the straightforward extensions of standard photo chambers of solar cells, those configurations are hydrodynamically less predictable and unfavorable due to large velocity gradients. The serpentine channel configuration with silver fingers would allow for the scaling of the µDSSC-RFB systems to the industrial scale without loss of performance. Furthermore, the deterioration of cell performance over time can be inhibited by the periodic sensitizer regeneration, which is the inherent advantage of µDSSC.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference57 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drift-Diffusion Phenomenon in the Presence of Reversible Trapping Reaction;The Journal of Physical Chemistry C;2024-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3