Robust Control for Non-Minimum Phase Systems with Actuator Faults: Application to Aircraft Longitudinal Flight Control

Author:

Sir Elkhatem Aisha,Engin Seref Naci,Pasha Amjad AliORCID,Rahman Mustafa MutiurORCID,Pillai Subramania NadarajaORCID

Abstract

This study is concerned with developing a robust tracking control system that merges the optimal control theory with fractional-order-based control and the heuristic optimization algorithms into a single framework for the non-minimum phase pitch angle dynamics of Boeing 747 aircraft. The main control objective is to deal with the non-minimum phase nature of the aircraft pitching-up action, which is used to increase the altitude. The fractional-order integral controller (FIC) is implemented in the control loop as a pre-compensator to compensate for the non-minimum phase effect. Then, the linear quadratic regulator (LQR) is introduced as an optimal feedback controller to this augmented model ensuring the minimum phase to create an efficient, robust, and stable closed-loop control system. The control problem is formulated in a single objective optimization framework and solved for an optimal feedback gain together with pre-compensator parameters according to an error index and heuristic optimization constraints. The fractional-order integral pre-compensator is replaced by a fractional-order derivative pre-compensator in the proposed structure for comparison in terms of handling the non-minimum phase limitations, the magnitude of gain, phase-margin, and time-response specifications. To further verify the effectiveness of the proposed approach, the LQR-FIC controller is compared with the pole placement controller as a full-state feedback controller that has been successfully applied to control aircraft dynamics in terms of time and frequency domains. The performance, robustness, and internal stability characteristics of the proposed control strategy are validated by simulation studies carried out for flight conditions of fault-free, 50%, and 80% losses of actuator effectiveness.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference62 articles.

1. Statistical Summary of Commercial Jet Airplane Accidents,2015

2. Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations|1959–2016,2017

3. A Statistical Analysis of Commercial Aviation Accidents 1958–2019,2020

4. Limitations of non-minimum-phase feedback systems†

5. Gain-bandwidth limitations of feedback systems with non-minimum-phase plants

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3