A Study of the Residual Strength of Reactive Powder-Based Geopolymer Concrete under Elevated Temperatures

Author:

Kannangara Thathsarani,Guerrieri Maurice,Fragomeni Sam,Joseph PaulORCID

Abstract

This paper reports on studies relating to the unstressed residual compressive strengths of geopolymer pastes that are heated up to 800 °C, behavior of reactive powder concrete before and after exposure to elevated temperatures and thermal behavior of novel reactive powder geopolymer-based concretes. For this purpose, 10 geopolymer pastes and three reactive powder concrete mixtures were tested for residual strengths. Gladstone fly ash was used as the primary binder for both geopolymer pastes and reactive powder geopolymer concretes. In addition, four novel reactive powder geopolymer concrete mixes were prepared with zero cement utilization. While reactive powder concretes achieved the highest seven-day compressive strengths of approximately 140 MPa, very poor thermal behavior was observed, with explosive spalling occurring at a temperature of ca. 360 °C. The reactive powder geopolymer concretes, on the other hand, displayed relatively high thermal properties with no thermal cracking at 400 °C, or visible signs of spalling and very mild cracking in one case at 800 °C. In terms of the strength of reactive powder geopolymer concrete, a maximum compressive strength of approximately 76 MPa and residual strengths of approximately 61 MPa and 51 MPa at 400 °C and 800 °C, respectively, were observed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference60 articles.

1. Reactive Powder Concrete;Team,2007

2. Reactive Powder Concretes with High Ductility and 200–800 MPa Compressive Strength;Richard;Spec. Publ.,1994

3. Composition of reactive powder concretes

4. A preliminary study of reactive powder concrete as a new repair material

5. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3