Abstract
In this paper, we propose a method to evaluate Highway Driving Assist (HDA) systems using the theoretical formula and dual cameras, which eliminates the need of experts or expensive equipment and reduces the time, effort, and cost required in such tests. A theoretical evaluation formula that can be calculated was proposed and used. The optimal position of the dual cameras, image and focal length correction, and lane detection methods proposed in previous studies were used, and a theoretical equation for calculating the distance from the front wheel of the vehicle to the driving lane was proposed. For the actual vehicle testing, HDA safety evaluation scenarios proposed in previous studies were used. According to the test results, the maximum errors were within 10%. It was determined that the representative cause of the maximum error occurred in the dual camera installed in the test vehicle. Problems such as road surface vibration, shaking due to air resistance, changes in ambient brightness, and the process of focusing the video occurred during driving. In the future, it is judged that it will be necessary to verify the complex transportation environment during morning and evening rush hour, and it is believed that tests will be needed in bad weather such as snow and rain.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science