Online Monitoring of Power Converter Degradation Using Deep Neural Network

Author:

Fan Jiayi,Lee Janghyeon,Jung Insu,Lee Yongkeun

Abstract

Power semiconductor devices in the power converters used for motor drives are susceptible to wear-out and failure, especially when operated in harsh environments. Therefore, detection of degradation of power devices is crucial for ensuring the reliable performance of power converters. In this paper, a deep learning approach for online classification of the health states of the snubber resistors in the Insulated Gate Bipolar Transistors (IGBTs) in a three-phase Brushless DC (BLDC) motor drive is proposed. The method can locate one out of the six IGBTs experiencing a snubber resistor degradation problem by measuring the voltage waveforms of the three shunt resistors using voltage sensors. The range of the degradation of the snubber resistors for successful classification is also investigated. The off-the-shelf deep Convolutional Neural Network (CNN) architecture ResNet50 is used for transfer learning to determine which snubber resistor has degraded. The dataset for evaluating the above classification scheme of IGBT degradation is obtained by measuring the shunt voltage waveforms with varying snubber resistance and reference current. Then, the three-phase voltage waveforms are converted into greyscale images and RGB spectrogram images, which are later fed into the deep CNN. Experiments are carried out on the greyscale image dataset and the spectrogram image dataset using four-fold cross-validation. The results show that the proposed scheme can classify seven classes (one class for normal condition and six classes for abnormal condition in one of the six IGBTs in a three-phase BLDC drive) with over 95% average accuracy within a specific range of snubber resistance. Using grayscale images and using spectrogram-based RGB images yields similar accuracy.

Funder

Korea Institute of Radiological and Medical Sciences

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Condition Monitoring of Power Electronic Devices-A Review;2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2022-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3