Modeling and Stability Analysis for the Vibrating Motion of Three Degrees-of-Freedom Dynamical System Near Resonance

Author:

Amer Wael S.ORCID,Amer Tarek S.ORCID,Hassan Seham S.

Abstract

The focus of this article is on the investigation of a dynamical system consisting of a linear damped transverse tuned-absorber connected with a non-linear damped-spring-pendulum, in which its hanged point moves in an elliptic path. The regulating system of motion is derived using Lagrange’s equations, which is then solved analytically up to the third approximation employing the approach of multiple scales (AMS). The emerging cases of resonance are categorized according to the solvability requirements wherein the modulation equations (ME) have been found. The stability areas and the instability ones are examined utilizing the Routh–Hurwitz criteria (RHC) and analyzed in line with the solutions at the steady state. The obtained results, resonance responses, and stability regions are addressed and graphically depicted to explore the positive influence of the various inputs of the physical parameters on the rheological behavior of the inspected system. The significance of the present work stems from its numerous applications in theoretical physics and engineering.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The stability analysis of a dynamical system equipped with a piezoelectric energy harvester device near resonance;Journal of Low Frequency Noise, Vibration and Active Control;2024-08-23

2. Evolution of rotational motions of a nearly dynamically spherical rigid body with a moving mass;Communications in Nonlinear Science and Numerical Simulation;2024-06

3. Non-linear vibration and bifurcation analysis of Euler-Bernoulli beam under parametric excitation;Journal of Engineering and Applied Science;2024-04-02

4. On the Stability of a 3DOF Vibrating System Close to Resonances;Journal of Vibration Engineering & Technologies;2024-01-17

5. A modal estimation method of rotating blade based on compressed sensing and blade tip timing;Journal of Low Frequency Noise, Vibration and Active Control;2023-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3