Effects of Pause Design on the Decline in Pulling Effort and the Evaluation of Perceived Effort in Pulling Tasks

Author:

Yi Cannan,Tang Fan,Li KaiwayORCID,Hu Hong,Zuo Huali,Zhao Caijun

Abstract

Pulling is one of the manual material handling activities that could lead to work-related musculoskeletal disorders. The objectives of this study were to explore the development of muscular fatigue when performing intermittent pulling tasks and to establish models to predict the pull strength decrease due to performing the tasks. A simulated truck pulling experiment was conducted. Eleven healthy male adults participated. The participants pulled a handle with a load of 40 kg, which resulted in a pulling force of approximately 123 N. The pulling tasks lasted for 9 or 12 min with one, two, or three pauses embedded. The total time period of the embedded pauses was 3 min. The pull strength after each pull and rest was measured. Ratings of the perceived exertion on body parts after each pull were also recorded. The results showed insignificant differences regarding the development of muscular fatigue related to rest frequency. We found that the development of muscular fatigue for pulling tasks with embedded pauses was significantly slower than that for continuous pulls. The forearm had a higher CR-10 score than the other body parts indicating that the forearm was the body part suffering early muscle fatigue. An exponential model was developed to predict the pull strength of the pulling tasks with embedded pauses. This model may be used to assess the developing of muscular fatigue for pulling tasks.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relationship between one-handed push force and subjective rating of force exertion;Work;2024-09-11

2. Fatigue and Recovery of Muscles for Pulling Tasks;International Journal of Environmental Research and Public Health;2022-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3