A Mini-Survey and Feasibility Study of Deep-Learning-Based Human Activity Recognition from Slight Feature Signals Obtained Using Privacy-Aware Environmental Sensors

Author:

Madokoro HirokazuORCID,Nix Stephanie,Woo HanwoolORCID,Sato Kazuhito

Abstract

Numerous methods and applications have been proposed in human activity recognition (HAR). This paper presents a mini-survey of recent HAR studies and our originally developed benchmark datasets of two types using environmental sensors. For the first dataset, we specifically examine human pose estimation and slight motion recognition related to activities of daily living (ADL). Our proposed method employs OpenPose. It describes feature vectors without effects of objects or scene features, but with a convolutional neural network (CNN) with the VGG-16 backbone, which recognizes behavior patterns after classifying the obtained images into learning and verification subsets. The first dataset comprises time-series panoramic images obtained using a fisheye lens monocular camera with a wide field of view. We attempted to recognize five behavior patterns: eating, reading, operating a smartphone, operating a laptop computer, and sitting. Even when using panoramic images including distortions, results demonstrate the capability of recognizing properties and characteristics of slight motions and pose-based behavioral patterns. The second dataset was obtained using five environmental sensors: a thermopile sensor, a CO2 sensor, and air pressure, humidity, and temperature sensors. Our proposed sensor system obviates the need for constraint; it also preserves each subject’s privacy. Using a long short-term memory (LSTM) network combined with CNN, which is a deep-learning model dealing with time-series features, we recognized eight behavior patterns: eating, operating a laptop computer, operating a smartphone, playing a game, reading, exiting, taking a nap, and sitting. The recognition accuracy for the second dataset was lower than for the first dataset consisting of images, but we demonstrated recognition of behavior patterns from time-series of weak sensor signals. The recognition results for the first dataset, after accuracy evaluation, can be reused for automatically annotated labels applied to the second dataset. Our proposed method actualizes semi-automatic annotation, false recognized category detection, and sensor calibration. Feasibility study results show the new possibility of HAR used for ADL based on unique sensors of two types.

Funder

Suzuki Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3