Justification of the Reduction Possibility of Sulfur Oxides and Fly Ash Emissions during Co-Combustion of Coal and Waste from Woodworking Enterprises

Author:

Yankovsky StanislavORCID,Tolokol’nikov Anton,Gorshkov Alexander,Misyukova Albina,Kuznetsov Geniy

Abstract

In this work, we experimentally investigated the effect of widespread biomass (woodworking waste—pine sawdust) in the composition of mixed fuel, formed also using the widespread steam coals metalignitous (D) and lean (T), on the concentration of sulfur, nitrogen and carbon oxides in flue gases. Investigations of composite fuels with a mass of at least 5 g were carried out in a reactor with continuous recording of the composition of the flue gases formed during the thermal decomposition of the investigated fuels. Thermal decomposition of fuels was carried out in the temperature range from 293 K to 873 K. It was found that an increase in the proportion of wood components in mixed fuels based on two different coals from 10% to 50% leads to a significant decrease in the concentration of sulfur oxides from 11% to 95.8% relative to the concentration of the formation of sulfur oxides in a homogeneous coal, respectively. It was found that an increase in the proportion of the wood component in the mixture with grade D coal up to 50% leads to a significant increase in the content of calcium sulfates (45.1%) and aluminum (43.2%) in the blended fuel. The increase in the content of these salts in the ash of mixed fuels based on T coal and wood is 35.1% and 38.6%, respectively. The obtained research results allowed us to conclude that woodworking wastes are an effective addition to the coals of various deposits, which would help to reduce anthropogenic-induced gas emissions when they are co-combusting in the furnaces of power boilers.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference55 articles.

1. IEA Coal-Fuels & Technologies-IEAhttps://www.iea.org/fuels-and-technologies/coal

2. Key World Energy Statistics 2020—Analysis-IEAhttps://www.iea.org/reports/key-world-energy-statistics-2020

3. Energy Outlook: 2020 Edition—The Energy Outlook Explores the Forces Shaping the Global Energy Transition out to 2050 and the Key Uncertainties Surrounding that Transition,2020

4. Implementing the SET Plan 2020 Report|SETIS,2020

5. Carbon debt and carbon sequestration parity in forest bioenergy production

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3