Abstract
In the present work, we investigate the modified nonlinear pump-probe optical properties due to the excitonic–plasmonic interaction of a double semiconductor quantum dot (SQD) molecule coupled to a metal nanoparticle (MNP). More specifically, we study the absorption and the dispersion spectra of a weak electromagnetic field in a hybrid structure with two counterparts, a molecule of two coupled SQDs, and a spherical MNP driven by a field of high intensity. We solve the relevant density matrix equations, calculate the first-order optical susceptibility of the probe field in the strong pumping regime, and investigate the way in which the distance between the two counterparts modifies the optical response, for a variety of values of the physical constants of the system, including the pump-field detuning, the tunnelling rate, and the energy separation gap associated with the excited states of the coupled SQDs.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献