Accuracy of Master Casts Generated Using Conventional and Digital Impression Modalities: Part 1—The Half-Arch Dimension

Author:

Sayed Mohammed E.ORCID,Alshehri Abdulkarim Hussain,Al-Makramani Bandar M. A.ORCID,Al-Sanabani Fuad,Shaabi Fawzia Ibraheem,Alsurayyie Fatimah H.,Ahmed Walaa Magdy,Al-Mansour Hosain,Jain SaurabhORCID

Abstract

Accurate impression-making is considered a vital step in the fabrication of fixed dental prostheses. There is a paucity of studies that compare the casts generated by various impression materials and techniques that are commonly used for the fabrication of provisional and definitive fixed prostheses. The aim of this study is to compare the accuracy of casts obtained using conventional impression and digital impression techniques. Thirty impressions were made for the typodont model (10 impressions each of polyvinyl siloxane, alginate, and alginate alternative materials). Ten digital models were printed from the same model using a TRIOS-3 3Shape intraoral scanner. Accuracy was assessed by measuring four dimensions (horizontal anteroposterior straight, horizontal anteroposterior curved, horizontal cross-arch, and vertical). A one-way ANOVA and Tukey’s test (α = 0.05) were used to analyze data. A statistically significant difference in the four dimensions of the stone casts and digital models was observed among the four groups (exception: between alginate alternative and 2-step putty–light body impression in the horizontal anteroposterior straight, horizontal anteroposterior curved, and horizontal cross-arch dimensions; between alginate and alginate alternative in the horizontal anteroposterior curved dimension; between alginate and 2-step putty–light body impression in the horizontal anteroposterior curved dimension; and between alginate alternative and digital in the vertical dimension). Polyvinyl siloxane had the highest accuracy compared to casts obtained from other impression materials and digital impressions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3