Analysis of Hydrogeochemical Characteristics and Origins of Chromium Contamination in Groundwater at a Site in Xinxiang City, Henan Province

Author:

Chen Wenfang,Zhang Yaobin,Shi Weiwei,Cui Yali,Zhang Qiulan,Shi Yakun,Liang Zexin

Abstract

Hexavalent chromium contamination in groundwater has become a very serious and challenging problem. Identification of the groundwater chemical characteristics of the sites and their control mechanisms for remediation of pollutants is a significant challenge. In this study, a contaminated site in Xinxiang City, Henan Province, was investigated and 92 groundwater samples were collected from the site. Furthermore, the hydrogeochemical characteristics and the distribution patterns of components in the groundwater were analyzed by a combination of multivariate statistical analysis, Piper diagram, Gibbs diagram, ions ratio and hydrogeochemical simulation. The results showed that the HCO3-Cl-Mg-Ca type, SO4-HCO3-Na type, and HCO3-Mg-Ca-Na type characterize the hydrogeochemical composition of shallow groundwater and HCO3-Cl-Mg-Ca type, HCO3-Na-Mg type, and HCO3-SO4-Mg-Na-Ca type characterize the hydrogeochemical composition of deep groundwater. Ion ratios and saturation index indicated that the groundwater hydrogeochemical characteristics of the study area are mainly controlled by water–rock action and evaporative crystallization. The dissolution of halite, gypsum and anhydrite, the precipitation of aragonite, calcite and dolomite, and the precipitation of trivalent chromium minerals other than CrCl3 and the dissolution of hexavalent chromium minerals occurred in groundwater at the site. The minimum value of pH in groundwater at the site is 7.55 and the maximum value is 9.26. The influence of pH on the fugacity state of minerals was further investigated. It was concluded that the saturation index of dolomite, calcite, aragonite and MgCr2O4 increases with the increase of pH, indicating that these minerals are more prone to precipitation, and the saturation index of Na2Cr2O7, K2Cr2O7 and CrCl3 decreases with the increase of pH, implying that Na2Cr2O7, K2Cr2O7 and CrCl3 are more prone to dissolution. The saturation index of the remaining minerals is less affected by pH changes. The study can provide a scientific basis for groundwater remediation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3