Numerical Simulation of Random Cavitation Suppression Based on Variable NACA Airfoils

Author:

Shi Weidong,Shi Zhouhao,Xie Zhanshan,Zhang Qinghong,Yang Yongfei,Tan LinweiORCID

Abstract

In order to suppress the cavitation of an airfoil under random operating conditions, a deformable covering was constructed in the cavitation prone area of the NACA0012 airfoil. By sensing the pressure difference between the inner and outer sides of the airfoil, the covering of the airfoil can be changed adaptively to meet the requirement of suppressing random cavitation of the airfoil. The simulation results show that the cavitation influence range of the airfoil with a shape memory alloy covering can be reduced by more than 70%, and the cavitation is well reduced and suppressed. Moreover, the backflow near the wall of the airfoil was reduced under random working conditions. When the maximum bulge deformation of the covering was between 3–6 mm, the airfoil produced a cavitation range only on the covering surface of the airfoil, and there was no cavitation erosion on other parts. This method with locally variable airfoil to suppress cavitation provides a good reference value for other hydraulic machinery to suppress cavitation.

Funder

This research was funded by the National Key Research and Development Project of China

Jiangsu Water Conservancy Science and Technology Project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special Issue on the Advances in Fluid Mechanics;Applied Sciences;2023-04-28

2. Unsteady numerical simulation method of hydrofoil surface cavitation;International Journal of Mechanical Sciences;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3