ZnFe2O4, a Green and High-Capacity Anode Material for Lithium-Ion Batteries: A Review

Author:

Bini MarcellaORCID,Ambrosetti Marco,Spada Daniele

Abstract

Ferrites, a broad class of ceramic oxides, possess intriguing physico-chemical properties, mainly due to their unique structural features, that, during these last 50–60 years, made them the materials of choice for many different applications. They are, indeed, applied as inductors, high-frequency materials, for electric field suppression, as catalysts and sensors, in nanomedicine for magneto-fluid hyperthermia and magnetic resonance imaging, and, more recently, in electrochemistry. In particular, ZnFe2O4 and its solid solutions are drawing scientists’ attention for the application as anode materials for lithium-ion batteries (LIBs). The main reasons are found in the low cost, abundance, and environmental friendliness of both Zn and Fe precursors, high surface-to-volume ratio, relatively short path for Li-ion diffusion, low working voltage of about 1.5 V for lithium extraction, and the high theoretical specific capacity (1072 mAh g−1). However, some drawbacks are represented by fast capacity fading and poor rate capability, resulting from a low electronic conductivity, severe agglomeration, and large volume change during lithiation/delithiation processes. In this review, the main synthesis methods of spinels will be briefly discussed before presenting the most recent and promising electrochemical results on ZnFe2O4 obtained with peculiar morphologies/architectures or as composites, which represent the focus of this review.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3