Towards Continuous Deployment for Blockchain

Author:

Górski TomaszORCID

Abstract

Ensuring a production-ready state of the application under development is the immanent feature of the continuous delivery approach. In a blockchain network, nodes communicate, storing data in a decentralized manner. Each node executes the same business application but operates in a distinct execution environment. The literature lacks research, focusing on continuous practices for blockchain and distributed ledger technology. In particular, such works with support for both software development disciplines of design and deployment. Artifacts from considered disciplines have been placed in the 1 + 5 architectural views model. The approach aims to ensure the continuous deployment of containerized blockchain distributed applications. The solution has been divided into two independent components: Delivery and deployment. They interact through Git distributed version control. Dedicated GitHub repositories should store the business application and deployment configurations for nodes. The delivery component has to ensure the deployment package in the actual version of the business application with the node-specific up-to-date version of deployment configuration files. The deployment component is responsible for providing running distributed applications in containers for all blockchain nodes. The approach uses Jenkins and Kubernetes frameworks. For the sake of verification, preliminary tests have been conducted for the Electricity Consumption and Supply Management blockchain-based system for prosumers of renewable energy.

Funder

Polish Naval Academy of the Heroes of Westerplatte

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3