Diabetic Retinopathy Improved Detection Using Deep Learning

Author:

Ayala AngelORCID,Ortiz Figueroa Tomás,Fernandes BrunoORCID,Cruz FranciscoORCID

Abstract

Diabetes is a disease that occurs when the body presents an uncontrolled level of glucose that is capable of damaging the retina, leading to permanent damage of the eyes or vision loss. When diabetes affects the eyes, it is known as diabetic retinopathy, which became a global medical problem among elderly people. The fundus oculi technique involves observing the eyeball to diagnose or check the pathology evolution. In this work, we implement a convolutional neural network model to process a fundus oculi image to recognize the eyeball structure and determine the presence of diabetic retinopathy. The model’s parameters are optimized using the transfer-learning methodology for mapping an image with the corresponding label. The model training and testing are performed with a dataset of medical fundus oculi images and a pathology severity scale present in the eyeball as labels. The severity scale separates the images into five classes, from a healthy eyeball to a proliferative diabetic retinopathy presence. The latter is probably a blind patient. Our proposal presented an accuracy of 97.78%, allowing for the confident prediction of diabetic retinopathy in fundus oculi images.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Diabetic Retinopathy Using Discrete Wavelet-Based Center-Symmetric Local Binary Pattern and Statistical Features;Journal of Imaging Informatics in Medicine;2024-09-05

2. Diabetic Retinopathy Detection Using Deep Learning;2024 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT);2024-07-04

3. An Effective Heuristic Optimizer with Deep Learning-assisted Diabetic Retinopathy Diagnosis on Retinal Fundus Images;Engineering, Technology & Applied Science Research;2024-06-01

4. A hybrid evolutionary weighted ensemble of deep transfer learning models for retinal vessel segmentation and diabetic retinopathy detection;Computers and Electrical Engineering;2024-04

5. A Classification Framework for Diabetic Retinopathy Detection Using Transfer Learning;2024 2nd International Conference on Cyber Resilience (ICCR);2024-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3