Abstract
Despite recent Artificial Intelligence (AI) advances in narrow task areas such as face recognition and natural language processing, the emergence of general machine intelligence continues to be elusive. Such an AI must overcome several challenges, one of which is the ability to be aware of, and appropriately handle, context. In this article, we argue that context needs to be rigorously treated as a first-class citizen in AI research and discourse for achieving true general machine intelligence. Unfortunately, context is only loosely defined, if at all, within AI research. This article aims to synthesize the myriad pragmatic ways in which context has been used, or implicitly assumed, as a core concept in multiple AI sub-areas, such as representation learning and commonsense reasoning. While not all definitions are equivalent, we systematically identify a set of seven features associated with context in these sub-areas. We argue that such features are necessary for a sufficiently rich theory of context, as applicable to practical domains and applications in AI.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献