Author:
Brown Elliott R.,Mendoza Edgar A.
Abstract
We report on the room-temperature experimental measurement of THz absorption signatures in aqueous, double-stranded nucleic acid solutions confined to the submicron silica channels on fused quartz substrates using THz frequency-domain (photomixing) spectroscopy. Three sharp (i.e., strong and narrow) signatures, ~10–20 GHz FWHM, are observed in the shortest base pair sample—small interfering, double-stranded (ds) RNA—in the range of 800 GHz to 1.1 THz. Three similar signatures are also observed in a 50-bp dsDNA ladder sample. For a 1-kbp dsDNA ladder sample, the three are still evident, but are broadened and weakened. For a 48.5-kbp sample (λ-DNA), no prominent signatures are observed, but rather a quasi-sinusoidal transmittance spectrum consistent with a substrate etalon effect. The division between sharp signatures and no signatures is consistent with the molecular length being shorter or longer than the persistence length.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science