Effect of Interactions between Vehicles and Mid-Block Crosswalks on Traffic Flow and CO2 Emission

Author:

Pérez Cruz José RobertoORCID,Lakouari NoureddineORCID,Pérez Sansalvador Julio CésarORCID,Zapotecatl López Jorge LuisORCID

Abstract

Unsignalized mid-block raised crosswalks have been adopted as inclusive transport strategies, providing humps to reduce vehicles’ speed to promote drivers to yield to pedestrians. The interaction between vehicles and pedestrians can induce local jams that can merge to become a gridlock. The purpose of this paper is to investigate the interaction between vehicles and the mid-block raised crosswalk, analyzing its effects on traffic flow, instantaneous CO2 emissions, and energy dissipation. A pedestrian–vehicle cellular automata model was developed, where a single-lane road with a mid-block raised crosswalk is considered. The lane boundaries were controlled with the injections rate (α) and extraction rate (β), while the pedestrians’ entrance was controlled with the rate (αp). The system’s phase diagram was constructed, identifying four phases: maximum current, jamming, congestion, and gridlock. All observed phase transitions are of the second order. The transition from maximum current (or jamming) phase to gridlock phase is not noticed. Moreover, since the crosswalk is a bottleneck, the gridlock phase takes place when the pedestrians’ influx exceeds a critical value (αp > 0.8). The study also revealed that the crosswalk is the main precursor of energy dissipation and CO2 emissions, whose major effects are observed during the jamming phase.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pedestrian–vehicle interactions at unsignalized mid-block crosswalks: Effects on traffic flow, CO2 emissions, and energy dissipation;Physica A: Statistical Mechanics and its Applications;2023-11

2. Midblock Pedestrian Signal Safety Effectiveness;Transportation Research Record: Journal of the Transportation Research Board;2023-08-15

3. Energy Costs of Safe Speed Policies in a Pedestrian-crossing Scenario;2023 IEEE Intelligent Vehicles Symposium (IV);2023-06-04

4. Greenhouse Gas Emission Scenarios and Vehicle Engine Performance in a Main Urban Road in Northwestern Mexico;Applied Sciences;2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3