Architectural Simulation of Hybrid Energy Harvesting: A Design Experiment in Lanzarote Island

Author:

Choi Ho SoonORCID

Abstract

This study conducts research on an architectural design based on energy harvesting technology. The research subject is a pergola-style structure to be built in a square in Arrecife, the Spanish territory of Lanzarote Island. The architectural design based on the energy harvesting technology developed in this research utilizes solar energy. To install a solar panel on the roof of the pergola, the optimal tilt angle from January to December was derived by using a function that considered the latitude and solar declination value of the study site, and the amount of renewable energy generation was calculated. The architectural design based on energy harvesting also utilizes wind power. To transform wind power into renewable energy, piezoelectric materials that trigger renewable energy with the micro-vibrations generated by wind power are applied to the architectural design. The amount of energy generation was calculated considering the wind power and wind direction in the location where the pergola should be built; in addition, this calculation used information from prior studies on piezoelectric materials. This article is significant, as it has developed an architectural design where hybrid energy harvesting technology that utilizes two types of natural energy (solar and wind) is applied to a building façade.

Funder

Gachon University

The National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3