Using Feedback Strategies in Simulated Annealing with Crystallization Heuristic and Applications

Author:

Duran Guilherme C.ORCID,Sato André K.ORCID,Ueda Edson K.ORCID,Takimoto Rogério Y.ORCID,Bahabadi Hossein G.ORCID,Barari AhmadORCID,Martins Thiago C.ORCID,Tsuzuki Marcos S. G.ORCID

Abstract

This paper represents how typical advanced engineering design can be structured using a set of parameters and objective functions corresponding to the nature of the problem. The set of parameters can be in different types, including integer, real, cyclic, combinatorial, interval, etc. Similarly, the objective function can be presented in various types including integer (discrete), float, and interval. The simulated annealing with crystallization heuristic can deal with all these combinations of parameters and objective functions when the crystallization heuristic presents a sensibility for real parameters. Herein, simulated annealing with the crystallization heuristic is enhanced by combining Bates and Gaussian distributions and by incorporating feedback strategies to emphasize exploration or refinement, or a combination of the two. The problems that are studied include solving an electrical impedance tomography problem with float parameters and a partially evaluated objective function represented by an interval requiring the solution of 32 sparse linear systems defined by the finite element method, as well as an airplane design problem with several parameters and constraints used to reduce the explored domain. The combination of the proposed feedback strategies and simulated annealing with the crystallization heuristic is compared with existing simulated annealing algorithms and their benchmark results are shown. The enhanced simulated annealing approach proposed herein showed better results for the majority of the studied cases.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

National Council for Scientific and Technological Development

São Paulo Research Foundation

Universidade de São Paulo

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart Manufacturing and Industry 4.0;Applied Sciences;2023-01-25

2. Introductory Chapter: Optimization Problems in Engineering;Engineering Problems - Uncertainties, Constraints and Optimization Techniques;2022-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3