Abstract
Counting people in crowd scenarios is extensively conducted in drone inspections, video surveillance, and public safety applications. Today, crowd count algorithms with supervised learning have improved significantly, but with a reliance on a large amount of manual annotation. However, in real world scenarios, different photo angles, exposures, location heights, complex backgrounds, and limited annotation data lead to supervised learning methods not working satisfactorily, plus many of them suffer from overfitting problems. To address the above issues, we focus on training synthetic crowd data and investigate how to transfer information to real-world datasets while reducing the need for manual annotation. CNN-based crowd-counting algorithms usually consist of feature extraction, density estimation, and count regression. To improve the domain adaptation in feature extraction, we propose an adaptive domain-invariant feature extracting module. Meanwhile, after taking inspiration from recent innovative meta-learning, we present a dynamic-β MAML algorithm to generate a density map in unseen novel scenes and render the density estimation model more universal. Finally, we use a counting map refiner to optimize the coarse density map transformation into a fine density map and then regress the crowd number. Extensive experiments show that our proposed domain adaptation- and model-generalization methods can effectively suppress domain gaps and produce elaborate density maps in cross-domain crowd-counting scenarios. We demonstrate that the proposals in our paper outperform current state-of-the-art techniques.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference70 articles.
1. CNN-based Density Estimation and Crowd Counting: A Survey;Gao;arXiv,2020
2. Deep Learning for Crowd Counting: A Survey
3. PCC Net: Perspective Crowd Counting via Spatial Convolutional Network
4. Domain-adaptive crowd counting via inter-domain features segregation and gaussian-prior reconstruction;Gao;arXiv,2019
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献