Reducing the Heart Failure Burden in Romania by Predicting Congestive Heart Failure Using Artificial Intelligence: Proof of Concept

Author:

Pană Maria-AlexandraORCID,Busnatu Ștefan-SebastianORCID,Serbanoiu Liviu-Ionut,Vasilescu Electra,Popescu Nirvana,Andrei Cătălina,Sinescu Crina-JulietaORCID

Abstract

Due to population aging, we are currently confronted with an increased number of chronic heart failure patients. The primary purpose of this study was to implement a noncontact system that can predict heart failure exacerbation through vocal analysis. We designed the system to evaluate the voice characteristics of every patient, and we used the identified variations as an input for a machine-learning-based approach. We collected data from a total of 16 patients, 9 men and 7 women, aged 65–91 years old, who agreed to take part in the study, with a detailed signed informed consent. We included hospitalized patients admitted with cardiogenic acute pulmonary edema in the study, regardless of the precipitation cause or other known cardiovascular comorbidities. There were no specific exclusion criteria, except age (which had to be over 18 years old) and patients with speech inabilities. We then recorded each patient’s voice twice a day, using the same smartphone, Lenovo P780, from day one of hospitalization—when their general status was critical—until the day of discharge, when they were clinically stable. We used the New York Heart Association Functional Classification (NYHA) classification system for heart failure to include the patients in stages based on their clinical evolution. Each voice recording has been accordingly equated and subsequently introduced into the machine-learning algorithm. We used multiple machine-learning techniques for classification in order to detect which one turns out to be more appropriate for the given dataset and the one that can be the starting point for future developments. We used algorithms such as Artificial Neural Networks (ANN), Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). After integrating the information from 15 patients, the algorithm correctly classified the 16th patient into the third NYHA stage at hospitalization and second NYHA stage at discharge, based only on his voice recording. The KNN algorithm proved to have the best classification accuracy, with a value of 0.945. Voice is a cheap and easy way to monitor a patient’s health status. The algorithm we have used for analyzing the voice provides highly accurate preliminary results. We aim to obtain larger datasets and compute more complex voice analyzer algorithms to certify the outcomes presented.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3