Abstract
Due to population aging, we are currently confronted with an increased number of chronic heart failure patients. The primary purpose of this study was to implement a noncontact system that can predict heart failure exacerbation through vocal analysis. We designed the system to evaluate the voice characteristics of every patient, and we used the identified variations as an input for a machine-learning-based approach. We collected data from a total of 16 patients, 9 men and 7 women, aged 65–91 years old, who agreed to take part in the study, with a detailed signed informed consent. We included hospitalized patients admitted with cardiogenic acute pulmonary edema in the study, regardless of the precipitation cause or other known cardiovascular comorbidities. There were no specific exclusion criteria, except age (which had to be over 18 years old) and patients with speech inabilities. We then recorded each patient’s voice twice a day, using the same smartphone, Lenovo P780, from day one of hospitalization—when their general status was critical—until the day of discharge, when they were clinically stable. We used the New York Heart Association Functional Classification (NYHA) classification system for heart failure to include the patients in stages based on their clinical evolution. Each voice recording has been accordingly equated and subsequently introduced into the machine-learning algorithm. We used multiple machine-learning techniques for classification in order to detect which one turns out to be more appropriate for the given dataset and the one that can be the starting point for future developments. We used algorithms such as Artificial Neural Networks (ANN), Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). After integrating the information from 15 patients, the algorithm correctly classified the 16th patient into the third NYHA stage at hospitalization and second NYHA stage at discharge, based only on his voice recording. The KNN algorithm proved to have the best classification accuracy, with a value of 0.945. Voice is a cheap and easy way to monitor a patient’s health status. The algorithm we have used for analyzing the voice provides highly accurate preliminary results. We aim to obtain larger datasets and compute more complex voice analyzer algorithms to certify the outcomes presented.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献